Chapter 5

Fractions and Decimals

Linda M. Gojak, the president of the National Council of Teachers of Mathematics, said "We've had a tendency in our traditional scope and sequence of math that you teach all this whole number stuff and then all of a sudden you get to fractions and it's a whole new world of what to do - everything they learned in whole numbers has nothing to do with how you do fractions. It's one of the hardest things for kids to get their heads around." Students need a balanced curriculum that is not only focused on procedural fluency but on developing a conceptual foundation of fractions that enables students to be flexible problem solvers.

Pause

For each example, refer to the description of the Mathematical Process Standard provided in Chapter One and consider which specific components of the targeted Mathematical Process is being addressed. A solution guide is included at the end of the chapter.

$3^{\text {rd }}$ grade

Content Focus: The student will be able to compare fractions with like denominators.

Problem 1

Mathematical Process Standard 2: Reason contextually and abstractly
Mathematical Process Standard 4: Model with mathematics
Mathematical Process Standard 7: Identify and utilize structure and patterns
Britni and Tonya are sharing one cake. Britni has three pieces of cakes that are each $\frac{1}{5}$. Tonya has two pieces of cake that are each $\frac{1}{5}$. Using numbers or words, write a statement comparing Britni's amount of cake to Tonya's amount of cake.

Problem 2

Mathematical Process Standard 3: Justify your mathematical thinking
Compare $\frac{5}{8}$ and $\frac{7}{8}$. Explain how you know your answer is correct.

Problem 3

Mathematical Process Standard 3: Critique the reasoning of others
Britni was asked to compare $\frac{2}{4}$ and $\frac{3}{4}$. She drew the picture below to prove that $\frac{2}{4}$ is greater than $\frac{3}{4}$. Is her answer correct? Explain your thinking.

Problem 4

Mathematical Process Standard 4: Model with Mathematics

Which statement is true for the two fractions modeled below?

a. $\frac{2}{5}>\frac{3}{5}$
b. $\frac{2}{5}<\frac{3}{5}$
c. $\frac{2}{5}=\frac{3}{5}$
d. $\frac{3}{5}<\frac{2}{5}$

Problem 5

Mathematical Process Standard 1: Make sense of problems and persevere in solving them
Mathematical Process Standard 4: Model with mathematics

Which statement best describes the relationship between the two fractions?
a. $\frac{5}{10}>\frac{3}{10}$ because more area is shaded in rectangle B.
b. $\frac{5}{10}<\frac{3}{10}$ because more area is shaded in rectangle A.
c. $\frac{5}{10}=\frac{3}{10}$ because the same amount of area is shaded in each rectangle.
d. The comparison of the two fractions is not fair because the rectangles are different sizes.

Chapter 5 Connections and Solutions

$3^{\text {rd }}$ grade

Content Focus: The student will be able to compare fractions with like denominators.

Problem	Mathematical Process	Connections to the Mathematical Processes
1	MPS 2	The student is asked to decontextualize the problem by representing the situation symbolically.
	MPS 4	The student is asked to represent the mathematical situation using numbers or words.
	MPS 7	The student is asked to identify and utilize the structure of a fraction i.e. the number of equal parts

Problem	Mathematical Process	Connections to the Mathematical Processes
2	MPS 3	The student is asked to justify or explain their mathematical thinking.
3	MPS 3	The student is asked to analyze the arguments of others to determine if the argument has errors or flaws in logic then explain their thinking.
4	MPS 4	The student is asked to analyze and interpret the pictorial model of a fraction to solve a problem.
5	MPS 1	The student is asked to connect the current problem situation to previously learned concepts and skills i.e. when is a comparison of fractions valid.
5	MPS 4	The student is asked to analyze and interpret the pictorial model of a fraction to solve a problem.
		Mom

A solution guide is also included for each problem at the end of each chapter.

