Chapter 5

Fractions and Decimals

Linda M. Gojak, the president of the National Council of Teachers of Mathematics, said "We've had a tendency in our traditional scope and sequence of math that you teach all this whole number stuff and then all of a sudden you get to fractions and it's a whole new world of what to do – everything they learned in whole numbers has nothing to do with how you do fractions. It's one of the hardest things for kids to get their heads around." Students need a balanced curriculum that is not only focused on procedural fluency but on developing a conceptual foundation of fractions that enables students to be flexible problem solvers.

Pause___

For each example, refer to the description of the Mathematical Process Standard provided in Chapter One and consider which specific components of the targeted Mathematical Process is being addressed. A solution guide is included at the end of the chapter.

3rd grade

Content Focus: The student will be able to compare fractions with like denominators.

<u>Problem 1</u>
Mathematical Process Standard 2: Reason contextually and abstractly
Mathematical Process Standard 4: Model with mathematics
Mathematical Process Standard 7: Identify and utilize structure and patterns

Britni and Tonya are sharing one cake. Britni has three pieces of cakes that are each $\frac{1}{5}$. Tonya has two pieces of cake that are each $\frac{1}{5}$. Using numbers or words, write a statement comparing Britni's amount of cake to Tonya's amount of cake.

<u>Problem 2</u> Mathematical Process Standard 3: Justify your mathematical thinking

Compare $\frac{5}{8}$ and $\frac{7}{8}$. Explain how you know your answer is correct.

Problem 3

Mathematical Process Standard 3: Critique the reasoning of others

Britni was asked to compare $\frac{2}{4}$ and $\frac{3}{4}$. She drew the picture below to prove that $\frac{2}{4}$ is greater than $\frac{3}{4}$. Is her answer correct? Explain your thinking.

<u>Problem 4</u> Mathematical Process Standard 4: Model with Mathematics

Which statement is true for the two fractions modeled below?

a. $\frac{2}{5} > \frac{3}{5}$ c. $\frac{2}{5} = \frac{3}{5}$ b. $\frac{2}{5} < \frac{3}{5}$ d. $\frac{3}{5} < \frac{2}{5}$

Problem 5

Mathematical Process Standard 1: Make sense of problems and persevere in solving them

Mathematical Process Standard 4: Model with mathematics

Which statement best describes the relationship between the two fractions?

- a. $\frac{5}{10} > \frac{3}{10}$ because more area is shaded in rectangle B.
- b. $\frac{5}{10} < \frac{3}{10}$ because more area is shaded in rectangle A.
- c. $\frac{5}{10} = \frac{3}{10}$ because the same amount of area is shaded in each rectangle.
- d. The comparison of the two fractions is not fair because the rectangles are different sizes.

Chapter 5 Connections and Solutions

3rd grade

Content Focus: The student will be able to compare fractions with like denominators.

Problem	Mathematical Process	Connections to the Mathematical Processes
1	MPS 2	The student is asked to decontextualize the problem by representing the situation symbolically.
	MPS 4	The student is asked to represent the mathematical situation using numbers or words.
	MPS 7	The student is asked to identify and utilize the structure of a fraction i.e. $\frac{the number of equal parts}{size of the part}$ to solve the problem.

Problem	Mathematical Process	Connections to the Mathematical Processes
2	MPS 3	The student is asked to justify or explain their mathematical thinking.
3	MPS 3	The student is asked to analyze the arguments of others to determine if the argument has errors or flaws in logic then explain their thinking.
4	MPS 4	The student is asked to analyze and interpret the pictorial model of a fraction to solve a problem.
5	MPS 1	The student is asked to connect the current problem situation to previously learned concepts and skills i.e. when is a comparison of fractions valid.
	MPS 4	The student is asked to analyze and interpret the pictorial model of a fraction to solve a problem.

A solution guide is also included for each problem at the end of each chapter.