Algebra I Checklist

This document contains a list of Algebra I objectives arranged by points. The standard is referenced beside each objective. Remember that the EOC assessment will also incorporate the SC Mathematical Process Standards; therefore, it is important to also review these topics through processes such as problem solving.

Please double check for accuracy and correct any possible errors.

21-25 points

___Operations with polynomials; limit to linear and quadratic (A1.AAPR.1)
a. Add polynomials
b. Subtract polynomials
c. Multiply polynomials
__ Create and solve equations in one variable to model real world problems; limit to linear and quadratics with integer exponents (A1.ACE.1)
\qquad Create and solve inequalities in one variable to model real world problems; limit to linear and quadratics with integer exponents (A1.ACE.1)
___ Create equations in two or more variables to represent relationships between quantities (A1.ACE.2)
a. Linear
b. Exponential with integer exponents
c. Quadratic
d. Direct variation
e. Indirect variation
__ Graph equations on a coordinate axes with
appropriate labels (A1.ACE.2)
a. Linear
b. Exponential with integer exponents
c. Quadratic
d. Direct variation
e. Indirect variation
___ Solve literal equations and formulas for a specified variable (A1.ACE.4)
\qquad Understand that the steps taken to solve an equation create new equations that have the same solution as the original (A1.ARE1.1)
___ Justify the steps taken to solve an equation (A1.ARE1.1)
__ Solve linear equations in one variable including equations with coefficients represented by letters

(A1.AREI.3)

___ Solve linear inequalities in one variable including equations with coefficients represented by letters (A1.AREI.3)
___ Use completing the square to transform any quadratic equation into the form $(x-h)^{2}=k$ (A1.AREI.4a)
___ Derive the quadratic formula form the form $(x-h)^{2}=k($ A1.AREI.4)
___ Solve quadratic equations (A1.AREI.4b)
a. By inspection
b. Taking the square root
c. Completing the square
d. Quadratic formula
e. Factoring
__ Recognize that the quadratic formula can result in complex solutions (A1.AREI.4b)
__ Write complex solutions in the form $a+b i$ for real numbers a and b (A1.AREI.4b)
___ Justify that the solution to a systems of linear equations does not change because one of the equations is changed or replaced by the other equations (A1.AREI.5)
__ Solve a system of linear equations
a. Graphically (A1.ARE.6)
b. Substitution method (A1.ARE.6a)
c. Linear combination (A1.ARE.6b)
___ Understand that the solution to an equation in two variables is all of the points on the graph of the equation (A1.AREI. 10 and A1.FIF.1c)
\qquad Solve equation in the form $f(x)=g(x)$ graphically by identifying the point of intersection; limit to linear and quadratic (A1.AREI.11)
\ldots _ Graph a linear inequality in two variables
(A1.AREI.12)
\qquad Interpret the meaning of the following in real world situations; limit to linear, quadratic and exponential (A1.ASE.1)
a. Coefficients
b. Factors
c. Terms
d. Expressions
__ Understand that complicated expressions are made of simpler expressions (A1.ASE.1)
__ Rewrite the following in an equivalent form (expression) (A1.ASE.2)
a. Binomial
b. Trinomial
c. Other polynomials
\qquad Find the zeros of a quadratic function by rewriting it in equivalent factored form (A1.ASE.3a)
\qquad Explain the connection among the following for a quadratic function (A1.ASE.3a)
a. Zeros of a function
b. Its linear factors
c. The x-intercepts of the graph
d. Solutions to the equation

18-22 points

\qquad Describe the effects of the following transformation on $f(x)$; limit to linear, quadratic, exponential with integer exponents, vertical shift and vertical stretch (A1.FBF.3)
a. $k f(x)$
b. $f(x)+k$
c. $f(x+k)$
\qquad Given a graph, find the value of k then write the equation of the transformed graph; limit to linear, quadratic, exponential with integer exponents, vertical shift and vertical stretch (A1.FBF.3)
__ Understand the definition of a function (A1.FIF.1a)
__ Represent a function using function notation
(A1.FIF.1b)
___ Explain the $f(x)$ denotes the output of the function f with an input of x (A1.FIF.1b)
__ Understand that the solution to a function $f(x)$ is the set of ordered pairs (x, y) that satisfy the equations (A1.FIF.1c and A1.AREI.10)
__ Evaluate a function involving function notation when the function describes a real world situation (A1.FIF.2)
\qquad Interpret the meaning of expressions involving function notation when the function describes are real world situation (A1.FIF.2)
___ Graph and interpret the following key features of function that models the relationship between two quantities when given in table or graph form; limit to linear, quadratic and exponential (A1.FIF. 4 and A1.FIF.7)
a. Intercepts
b. Intervals of increasing/decreasing/constant
c. Relative maximums/minimums
d. Symmetries
e. End behavior
__ Sketch the graph of a function given the key features (A1.FIF.4)
___ Graph simple cases by hand and use technology; limit to linear, quadratic and exponential in the form $y=$ $a^{x}+k$ (A1.FIF.7)
\qquad Find the domain and range from a graph; limit to linear, quadratic and exponential (A1.FIF.5)
\qquad Find the average rate of change over a specified interval for a function in the following forms; limit to linear, quadratic and exponential (A1.FIF.6)
a. Graph
b. Equation
c. Table
__ Interpret the meaning of the average rate of change in the context of a situation (A1.FIF.6)
\qquad Translate a quadratic function to equivalent forms using factoring and completing the square (A1.FIF.8a)
\qquad Translate a quadratic function to an equivalent form to reveal the following and interpret their meaning in context (A1.FIF.8)
a. Zeros
b. Maximim/minimum
c. Symmetry
___ Compare the features of two function given in different representations; limit to linear, quadratic and exponential (A1.FIF.9)
a. Graph form
b. Table form
c. Verbal form
d. Verbal form
\qquad Distinguish between situations that can be modeled by a linear function and those that can be modeled by an exponential function (A1.FLQE.1)
\qquad Prove that linear functions grow by equal difference over equal intervals (A1.FLQE.1)
\qquad Prove that exponential functions grow by equal factors over equal intervals (A1.FLQE.1)
___ Create a symbolic representation of a linear function from an arithmetic sequence given (A1.FLQE.2)
a. Graph
b. Verbal Description
c. Table
___ Create a symbolic representation of an exponential function from an geometric sequence given (A1.FLQE.2)
a. Graph
b. Verbal Description
c. Table
___ Understand that a graph increasing exponentially eventually exceeds a quantity that is increasing
(A1.FLQE.3)
a. Linearly
b. Quadratically
c. At some rate for other polynomial functions
___ Understand that the values in a table increasing exponentially eventually exceeds a quantity that is increasing (A1.FLQE.3)
a. Linearly
b. Quadratically
c. At some rate for other polynomial functions
___ Interpret the parameter of a linear function in terms of the situation (A1.FLQE.5)
\qquad Interpret the parameter of a exponential function in terms of the situation (A1.FLQE.5)

5-9 points

___ Use the units of measure to guide the solution to a multi - step task (A1.NQ.1)
__ When constructing a graph, choose and interpret appropriate labels, units and scales (A1.NQ.1)
\qquad Label and define appropriate quantities in descriptive context (A1.NQ.2)
___ Choose the level of accuracy appropriate to reporting a quantity in context (A1.NQ.3)
__ Rewrite expressions involving (A1.NRNS.1)
a. Simple radicals
b. Rational exponents
___ Translate between radical form and rational exponents (A1.NRNS.2)
\qquad Explain why the sum or product of rational numbers is rational (A1.NRNS.3)
\qquad Explain why the sum of a rational number and an irrational number is irrational (A1.NRNS.3)
___ Explain why the product of nonzero rational number and an irrational number is irrational (A1.NRNS.3)
___ Use technology to create and analyze a scatter plot (A1.SPID.6)
\qquad Analyze scatter plots to decide which of the following is the best fit for the given data (A1.SPID.6)
a. Linear
b. Quadratic
c. Exponential

After selecting the best model for a function, (A1.SPID.6)
a. Fit the function to the set
b. Solve problems using the equation for the function

Create a linear function to graphically model data (A1.SPID.7)
\qquad Interpret the meaning of slope and y - intercept in the context of a problem (A1.SPID.7)
__ Use technology to compute the correlation coefficient of linear fit (A1.SPID.7)
\qquad Interpret the correlation coefficient of a linear fit
(A1.SPID.8)

