$8^{\text {th }}$ grade SC Ready Checklist

This document contains a list of $8^{\text {th }}$ grade objectives arranged by big topics. The standard is referenced beside each objective. Remember that the SC Ready assessment will also incorporate the SC Mathematical Process Standards; therefore, it is important to also review these topics through processes such as problem solving.
Please double check for accuracy and correct any possible errors.

Rational and Irrational numbers

\qquad Recognize the difference between a rational and irrational number (8.NS.1a)
__ Understand that all real numbers have a decimal expansion (8.NS.1b)
\qquad Model the hierarchy of the real number system including natural numbers, whole numbers, integers, rational numbers and irrational numbers (8.NS.1c)
\qquad Estimate the value of irrational numbers by plotting them on a number line (8.NS.2)
__ Compare the value of irrational numbers by plotting them on a number line (8.NS.2)
\qquad Translate among fractions, decimals and percents (8.NS.3)
\qquad Convert repeating decimals to fractions (8.NS.3)

Functions, Proportional Relationships and Data

__ Understand the meaning of a function (8.F.1a)
\qquad Relate inputs (x - values or domain) to the independent variable (8.F.1b)
\qquad Relate outputs (y -values or range) to the dependent variable (8.F.1b)
__ Translate among the following forms (8.F.1c)
a. Mapping
b. Table
c. Graph
d. Equation
e. Verbal description
__ Determine if a relation in the following forms is a function (8.F.1d)
a. Mapping
b. Table
c. Graph
d. Equation
e. Verbal description
__ Graph a function from a table of values (8.F.1e)
\qquad Understand that the graph and the table of a function represent the same set of ordered pairs (8.F.1f)
__ Collect bivariate data (8.DSP.1a)
\qquad Graph the bivariate data on a scatter plot
(8.DSP.1b)
__ Describe patterns observed on a scatter plot
(8.DSP.1c)
a. Clustering
b. Outliers
c. Positive correlation
d. Negative correlation
e. No correlation
f. Linear
g. Nonlinear
__ Graph proportional relationships (8.EEI.5a)
__ Compare two functions in the following forms
(8.F.2)
a. Mapping
b. Table
c. Graph
d. Equation
e. Verbal description
__ Compare two different proportional relationships in the following forms (8.EEI.5c)
a. Table
b. Graph
c. Equation
d. Diagram
e. Verbal description
\qquad Know the differences between a linear and non linear function (8.F.3)
a. Know that equations in $y=m x+b$ are linear functions
b. Recognize that graph of a linear function has a constant rate of change
c. Provide examples of nonlinear functions
\qquad Explain why the slope, m, is the same between any two distinct points on a non - vertical line using similar triangles (8.EEI.6a)
__ Derive the slope intercept form ($\mathrm{y}=\mathrm{mx}+\mathrm{b}$) for a non - vertical line (8.EEI.6b)
\qquad Understand that the slope is the constant rate of change and the y -intercept is the point where x is zero (8.F.4a)
\qquad Determine the slope and y - intercept of a linear function in the following forms (8.F.4b)
a. Two points
b. Table
c. Graph
d. Equation
e. Verbal description
\qquad Draw an approximate line of best fit on a scatter plot that appears to have linear association and informally assess the fit of the line (8.DSP.2)
\qquad Write an equation in slope intercept form to model a linear relationship between two quantities (8.F.4c)
__ Find an approximate equation for the line of best fit using two appropriate data points (8.DSP.3a)
\qquad Interpret unit rate as the slope of the graph (8.EEI.5b)
\qquad Interpret the meaning of the slope and y - intercept in the context of a situation (8.F.4d and 8.DSP.3b)
__ Solve problems using the equation from the line of best fit (8.DSP.3c)
\qquad Relate equations for proportional relationships ($y=k x$) with the slope - intercept form ($y=m x+b$) where $b=0$ (8.EEI.6c)
\qquad Understand the relationship between a linear function and an arithmetic sequence (8.F.4e)
\qquad Apply concepts of linear and nonlinear functions to graph and analyze real world and mathematical situations (8.F.5a)
a. Constant rate
b. Increasing/decreasing
c. Linear/nonlinear
d. Maximum/minimum value
e. Discrete/Continuous data
\qquad Sketch the graph of a function from a verbal description (8.F.5b)
\qquad Write a verbal description from the graph of a function with and without scales (8.F.5c)

Exponents and Roots

__ Apply the laws of exponent to numerical expressions that include integer exponents (8.EEI.1)
a. Product rule
b. Quotient rule
c. Power to a power rule
d. Product to a power
e. Quotient to a power
f. Zero Power property
g. Negative exponents
\qquad Find the exact and approximate value to equations in the form $x^{2}=p$ where p is a positive rational number (8.EEI.2a)
\qquad Find the exact and approximate value to equations in the form $x^{3}=p$ where p is a positive rational number (8.EEI.2a)
__ Evaluate the square roots of perfect squares
(8.EEI.2b)
__ Evaluate the cube roots of perfect cubes (8.EEI.2c)
\qquad Recognize that the square roots of non - perfect squares are irrational (8.EEI.2d)

Scientific Notation

\qquad Express very large and very small quantities using scientific notation in the form a $\times 10^{\mathrm{b}}$ where $1 \leq \mathrm{a}<10$ and b is an integer (8.EEI.3a)
\qquad Translate between decimal notation and scientific notation (8.EEI.3b)
\qquad Estimate and compare the relative size of two quantities in scientific notation (8.EEI.3c)
\qquad Multiply and divide numbers in decimal notation (8.EEI.4a)
\qquad Multiply and divide numbers in scientific notation (8.EEI.4a)
\qquad Select appropriate units of measure when representing answers in scientific notation (8.EEI.4b)
\qquad Translate answers from technological devices displaying numbers in scientific notation (8.EEI.4c)

Linear Equations

\qquad Solve linear equations with rational coefficients
(8.EEI.7a)
a. Distributive property
b. Combining like terms
c. Variables on both sides
__ Solve linear inequalities with rational coefficients (8.EEI.7a)
a. Distributive property
b. Combining like terms
c. Variables on both sides
__ Recognize the three types of solutions to linear equations (8.EEI.7b)
a. One Solution $x=a$
b. Infinitely many solution $\mathrm{a}=\mathrm{a}$
c. No solution $\mathrm{a}=\mathrm{b}$
___ Generate linear equations with the three types of solutions (8.EEI.7c)
___ Justify why linear equations have a specific type of solution (8.EEI.7d)

Systems of linear equations

___ Graph systems of linear equations and estimate their point of intersection (8.EEI.8a)
__ Understand that the point of intersection is the solution to a system (8.EEI.8b)
\qquad Verify that the point of intersection is the solution to a linear system (8.EEI.8b)
___ Solve systems of linear equation algebraically (8.EEI.8c)
a. Substitution method
b. Elimination method
c. Inspection
\qquad Understand that a linear system can have one solution, no solution or infinitely many solutions (8.EEI.8d)

Geometry and Measurement

___ Investigate the properties of rigid transformation (rotations, reflections, translations) (8.GM.1)
a. Verify that lines are mapped to lines, including parallel lines
b. Verify that corresponding angles are congruent
c. Verify that corresponding line segments are congruent Recons
___ Rotate a geometric figure (8.GM.2a)
a. 90° Clockwise, counterclockwise and about the origin
b. 180° Clockwise, counterclockwise and about the origin
c. 270° Clockwise, counterclockwise and about the origin
___ Reflect geometric figures across the x axis and the y axis (8.GM.2b)
___ Translate a geometric figure vertically and
horizontally (8.GM.2c)
\qquad Recognize that two dimensional shapes are only congruent if a series of rigid motions map the pre image to the image (8.GM.2d)
\qquad Given two congruent figures, describe the series of rigid transformations that justifies their congruence (8.GM.2e)
\qquad Use coordinate geometry to describe the effects of transformations on two dimensional figures (8.GM.3a)
__ Relate scale drawings to dilations (8.GM.3b)
Copyright 2016
\qquad Dilate geometric figure using scale factors that are positive rational numbers (8.GM.4a)
\qquad Recognize that two dimensional shapes are only similar if a series of rigid motions map the pre - image to the image (8.GM.4b)
\qquad Given two similar figures, describe the series of transformations that justifies their similarity (8.GM.4c)
\qquad Use proportional reasoning to find the missing side lengths of two similar figures (8.GM.4d)
\qquad Discover that the sum of three angles in a triangles is and 180° (8.GM.5a)
\qquad Discover and use the relationships between interior and exterior angles of triangle (8.GM.5b)
\qquad Identify congruent and supplementary pairs of angles when two parallel lines are cut by a transversal (8.GM.5c)
\qquad Recognize that two similar figures have congruent corresponding angles (8.GM.5d)
\qquad Use models to demonstrate a proof of the Pythagorean Theorem and its converse (8.GM.6)
\qquad Apply the Pythagorean Theorem to model and solve real world problems involving (8.GM.7)
a. Two dimensional shapes involving right angles
b. Three dimensional shapes involving right angles
\qquad Find the distance between two points using the Pythagorean Theorem (8.GM.8)
\qquad Solve real world and mathematical problems
involving volumes of the following (8.GM.9)
a. Cones
b. Cylinders
c. Spheres
\qquad Solve real world and mathematical problems involving surface area of cylinders (8.GM.9)

Bivariate data

__ Organize bivariate categorical data in a two way
table (8.DSP.4a)
\qquad Interpret data in two way tables using relative frequencies (8.DSP.4b)
\qquad Explore patterns of possible association between the two categorical variables (8.DSP.4c)

Matrices

___ Understand that a matrix is a way to organize data (8.DSP.5a)
__ Recognize that a $m \times n$ matrix has m rows and n columns (8.DSP.5b)
___ Add and subtract matrices of the same size (8.DSP.5c)
__ Multiply a matrix by a scalar (8.DSP.5d)

